Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters.

نویسندگان

  • Tarushee Ahuja
  • Dengchao Wang
  • Zhenghua Tang
  • Donald A Robinson
  • Jonathan W Padelford
  • Gangli Wang
چکیده

Electron transfer activities of metal clusters are fundamentally significant and have promising potential in catalysis, charge or energy storage, sensing, biomedicine and other applications. Strong resonance coupling between the metal core energy states and the ligand molecular orbitals has not been established experimentally, albeit exciting progress has been achieved in the composition and structure determination of these types of nanomaterials recently. In this report, the coupling between core and ligand energy states is demonstrated by the rich electron transfer activities of Au130 clusters. Quantized electron transfers to the core and multi-electron transfers involving the durene-dithiolate ligands were observed at lower and higher potentials, respectively, in voltammetric studies. After a facile multi-electron oxidation from +1.34 to +1.40 V, several reversal reduction processes at more negative potentials, i.e. +0.91 V, +0.18 V and -0.34 V, were observed in an electrochemically irreversible fashion or with sluggish kinetics. The number of electrons and the shifts of the respective reduction potentials in the reversal process were attributed to the electronic coupling or energy relaxation processes. The electron transfer activities and subsequent relaxation processes are drastically reduced at lower temperatures. The time- and temperature-dependent relaxation, involving multiple energy states in the reversal reduction processes upon the oxidation of ligands, reveals the coupling between core and ligand energy states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local methylthiolate adsorption geometry on Au(111) from photoemission core-level shifts.

The local adsorption structure of methylthiolate in the ordered Au(111)-(sqrt[3]xsqrt[3])R30 degrees phase has been investigated using core-level-shift measurements of the surface and bulk components of the Au 4f(7/2) photoelectron binding energy. The amplitude ratio of the core-level-shift components associated with surface Au atoms that are, and are not, bonded to the thiolate is found to be ...

متن کامل

Synthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction

The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So,  we report  that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L)  using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...

متن کامل

Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption

In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...

متن کامل

Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption

In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...

متن کامل

Evidence of superatom electronic shells in ligand-stabilized aluminum clusters.

Ligand-stabilized aluminum clusters are investigated by density functional theory calculations. Analysis of Kohn-Sham molecular orbitals and projected density of states uncovers an electronic shell structure that adheres to the superatom complex model for ligand-stabilized aluminum clusters. In this current study, we explain how the superatom complex electron-counting rule is influenced by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 29  شماره 

صفحات  -

تاریخ انتشار 2015